Please provide detailed solutions to these three problems.
1.) Develop a set of tables similar to Table 5.3 from the textbook for GF(4) with Modulo (x2 + x + 1).
2.) Determine the multiplicative inverse of (x3 + x + 1) in GF(2﻿4﻿) with m(x) = x﻿4﻿ + x + 1.
3.) Develop a table similar to Table 5.5 from the textbook for GF(2﻿4﻿) with m(x) = x﻿4﻿ + x + 1.


[bookmark: _GoBack]
Table 5.3
[image: ]
Table 5.5
[image: ]




5.1 For the group S n   of all permutations of n distinct symbols,
1. what is the number of elements in S n ?
	+
	a
	b

	a
	a
	b

	b
	a
	b


	x
	a
	b

	a
	a
	a

	b
	b
	b


5.3 Consider the set S={a,b}  with addition and multiplication defined by the following tables.
									


Is S a ring? Justify your answer.
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